

CASE STUDY

# Honda Canada Headquarters

180 Honda Blvd, Markham, Ontario

August 2010



# case study Honda Canada Headquarters

#### Background

The newly built Honda Canada Headquarters located in Markham, ON consists of three buildings; a four-storey LEED® certified head office, a center for research and development, engineering and training and a parts distribution facility. The complexity of this multi-use, multi-building campus made Fifth Light Technology the clear choice for lighting controls. The indoor and outdoor lighting fixtures included HID, linear fluorescent, and compact fluorescent lamp types.

#### **Project Objectives**

The Fifth Light Solution was designed to meet several key project objectives, as listed below:

- Maintain task-appropriate light levels at desk height while adjusting for ambient natural light
- Provide dimming and on/off control for multiple lighting types at different voltages with a single common open communication network
- Consolidate campus wide energy consumption data and lighting control to a single website

#### Solution Overview

To meet these challenges, Fifth Light's Signature Lighting Solution was chosen. This Solution consists of the following components:

- 1,400 DALI dimmable 2 lamp 32WT8 ballasts (120V)
- 450 DALI relays (347V/20A)
- 50 low voltage momentary switches
- 200 low voltage occupancy sensors
- 30 low voltage daylight sensors
- 5 Lighting Control Panels
- 1 multi-user web based Lighting Management Software application



#### Project Highlights

Lighting energy consumption reduced by

56%

A Centrally Controlled DALI Network of

2,135 Devices

10 Year Life Cycle Cost Savings of

## \$500,000

Consolidated energy reporting and lighting control for a

### Unified Campus Network





The key lighting management features provided in this project include:

1 Daylight Harvesting with gradient dimming. A network of daylight sensors adjust lighting levels in response to ambient lighting conditions. A gradient dimming algorithm allows for a single daylight sensor to dim the first row of light fixtures closest to the window more than the second row, which is dimmed more than the third row.

2 Wall Mount Control with device specific profiles. Each momentary switch is assigned a set of fixtures and a response pattern through software. Virtual lighting zones allow for the set of fixtures controlled by a given momentary switch to be modified at anytime without rewiring. Dynamic time limits, virtual minimum and maximum levels allow the facility manager to customize the behavior of each momentary switch.

**3** Automatic Tube Fault Detection and Dispatch. The operational status of each DALI ballast and lamp is automatically checked every 2 minutes. An electronic notification that illustrates the location of the fixture to be serviced is emailed to the facility management team.

**4** Web based control. The facility team is given password protected access through an internet browser.

**5** Unified Campus Network. Energy management data and lighting control for the entire campus is consolidated to a single web site. Users login through a web browser to see how much energy is saved in the entire campus, a specific building or any user defined group. Energy savings reports are emailed regularly to the facility team.

#### Results

The results of this project have been determined by creating an energy model that compared the Fifth Light Solution to a typical non-dimmable, efficient lighting system.

- Floor light level: 40-45 foot candles
- Energy savings: 56%
- 10 year life cycle savings: \$500,000
- Payback period: 3.8 years
- Greenhouse gas reduction: 350 tonnes CO<sub>2</sub> eq/year <sup>1</sup>

This case study is based on data produced upon completion of the installation.

<sup>1</sup> Canadian Energy Research Institute, *Comparative Life Cycle Assessment of Base Load Electricity Generation in Ontario*, October 2008.

